
SELF-SIMILAR MOTION OF A GAS HEATED BY A NONEQUILIBRIUM CONTINUOUS 
RADIATION SPECTRUM 

V. M. K r o l  a n d  I. V. N e m c h i n o v  

Z h u r n a l  P r i k l a d n o i  M e k h a n i k i  i T e k h n i c h e s k o i  F i z i k i ,  Vol .  9,  No. 5, pp .  3 2 - 3 7 ,  1968 

In this paper we discuss the motion of the vapor formed during the 
evaporation of a solid by a continuous radiation spectrum. The vapor 
is assumed to be heated by this radiation to a temperature T much 
higher than the phase-transition temperature T v and much higher than 
the temperature T i at which significant ionization of the vapor begins. 

In the case, T v and T i can be neglected (as can the heat of evapo- 
ration Qv and the energy Qi expended on ionization). As a result of 
this motion, the vapor has a density p much lower than the density P0 
of the solid. It can therefore be assumed that the heating wave moves 
through an absolutely cold and infihitely dense gas. At the same time, 
the vapor temperature is assumed low enough that reradiation can be 
neglected. The radiation-absorption coefficient u for the ionized vapor 
can be described by a power-law dependence on T and p for certain 
ranges of T, e, and the photon energy s. In this case, the motion of 
the gas is a self-similar problem. The spectrum and angular distribu- 
tion of the incident radiation [~0(s,O)] and the ~ and s dependences can 

be arbitrary. A system of ordinary differential equations is found and 
solved. 

Intense radiation incident on a solid surface will evaporate the 
solid. If the absorption coefficient ~ of the vapor and the flux density 
q of the radiation are high enough, the escaping vapor will be heated 
to a high temperature in a relatively short time. This temperature will 

not only be much higher than the evaporation temperature T v, but it 
will also be higher than the "ionization temperature" T i. If the internal 
energy per unit mass of the vapor is much higher than the heat of evap- 
oration Qv and the energy Qi expended on ionization, and if thevapor 
density p i~ much lower than the initial density Po as a result of its es- 
cape, then the problem of the motion and heating of the vapor can be 

simplified through the assumptions 

r~=  7 t = q ~ = q ~ = o ,  po=~o ( v o = i / p 0 = o )  (0.1) 

(here and below, v is the specific volume). We can therefore assume 
that the heating wave moves through an infinitely dense and absolutely 
cold gas. In the region of multiple and complete ionization, the ionized- ! 
vapor absorption coefficient z ,  associated with free-free electron tran- 
sitions in the field of ions, and bound-free transiti~ from the higher- 
lying states of atoms and ions, has an approximately power-law depen- 
dence on T and p [1], or on p and p (p is the pressure): 

• = kqD (s) T"~P ~ = K,~ (e) pbp-a.  (0.2) 

Here k and K are numerical coefficients which depend on the sub- 
stance and on the ranges of T, p, and e in which (0.2) is used. For a 
completely ionized gas, wehave a = 3/2, t5 = 1, a = -5 /2 ,  b = --3/2, 
and r = s z when s << T; orc~ = 3/2,~ = 1, a = 3/2, andb = ---1/2 when 

when s >> T. We assume that (0.2) holds for_ any T, for approximation (0.1). 
We assume the ratio of specific heats $ to be constant for a certain 
temperature range in the range of multiple and complete ionization. 

With these simplifying approximations, the problem of the planar, 
transient flow of a gas heated by a beam of monochromatic radiation is 

a self-similar problem. It has been studied in [2,3]. It is shown below 
that the analogous problem of the motion of a gas heated by a nonequi- 
librium continuous radiation spectrum is also self-similar. 

For a partially ionized gas, approximation (0.2) is usualy satisfied 
only for the long-wavelength part of the incident spectrum. For the 
short-wavelength part of the spectrum (that is, for photons whose energy 
is close to or greater than the ionization potential characteristic of the 
ions for the given temperature range, and which are capable of direct 

photoionization of these ions from the ground or first excited status), the 
absorption coefficient is usually much smaller (by several orders of 
magnitude). This "hard" radiation penetrates a short distance into the 
solid, causing intense heating of a thin surface layer of small mass .  A n  

afterionization wave propagates through the substance, moving under 
the influence of the radiation flux in the hard part of the spectrum; if 
the temperature of the surface layer is close to the source temperature 
T e, and reradiation becomes important, there will also be a thermal 
wave [1]. Since the energy expended in heating is large in thesewaves, 
their propagation velocity is small (in comparison with that of the 
wave of evaporation, initial ionization, and heating of the plasma by 
the long-wavelength part of the spectrum), even if the hard and soft 
parts of the incidence spectrum have comparable energies (E h and Es). 
Also, the intense reradiation by the thermal wave in the hard part of 

the spectrum increases its propagation velocity. Finally, the energy in 
the short-wavelength part of the spectrum may in general be small 
because of self-adsorption in the source itself (for example, adsorption 
of the short-wavelength radiation in the cold working gas ahead of a 
shock wave front in an explosive source [4]). Accordingly, the heating 
waves for the various parts of the source spectrum may propagate dif-_ 
ferently. Since the mass of the surface layer heated by the short-wave- 
length part of the spectrum is small, the pressure produced as a result of 
of the disintegration of the surface layer is small when Eh is of the order 
order of Es or, especially, when Eh << Es; that is, the hydrodynamic 
effects of the heating and surface-layer disintegration on the motion and 
and heating of the deep layers heated by the "basic" part of the spec- 
trum can also be neglected. The high temperature and low density of 
this layer only facilitate the penetration of the long-wavelength part of 
the spectrum into the deeper layers; however, because of the small 
mass of this layer, even this phenomenon has little effect on the hydro- 
dynamic processes in the deeper layers. Accordingly, Eq. (0.2) can 
frequently be assumed valid for the basic part of the spectrum in the 
case of a partially ionized gas, also; the rest of the spectrum may 
simply be neglected. These restrictions on the applicability of the 
self-similar problem are generally removed in the case of a completely 
ionized gas. A state close to that of complete ionization arises when 
two ionization potentials typical of a given temperature range are 
greatly different (this occurs, for example, in the case of the alkaline 
metals, and also when one atomic shell has been essentially ionized, 
while another has not yet started to be ionized; e . g . ,  the L- and K- 
shells or the M- and L-shells). 

We consider here the case in which the heating is caused by non- 
equilibrium radiation, that is, radiation such that the intrinisic radia- 
tion of the vapor may be neglected. This is a valid assumption when 
the vapor temperature is considerably below the source temperature T e, 
or, more accurately, when the following eonditionholds(for a Planekian 
source spectrum): 

Wor ,4X(~e e2 > ~ r 4  
(0.3) 

Here W is the source-radiation dilution coefficient due togeome- 
tric factors, o is the Stefan-Boltzmann constant, 81 and 82 are the 
boundaries of the "basic part" of the spectrum, and • is the fraction of 
the spectral energy of a Planckian source with a temperature T e or T 
for photons with energies el -< 8 -< 8s. We note that the boundaries el 
and 8z for the source and vapor-radiation spectra are sometimes slightly 
different, but condition (0.3) can be easily modified for this situation 
or for a non-Planckian source spectrum. 

548 



For our problem, the radiation intensity J = l (m, t, e, O) is a func- 
tion of four variables: the time t, the Lagrangian mass coordinate m, 
the photon energy e, and the angle 0 between the direction of motion 
and the beam direction. The intensity J0 = J (0, t, e, O) of the radiation 
incident on the boundary m = 0 is assumed to be a given function. In 
the self-similar problem, J can be represented as 

J = P.] (mt -n, e, 0). 
(0.4) 

This can be done (when conditions (0.1)-(0.3) are satisfied) when J0 
can be represented by 

Jo = ? r  (e, O) (~1 ".< 8 ..< e2, Ox ~< 0 ~< 0~). 
(0.5) 

if the source spectrum is Planckian, condition (0.5) requires that 
T e = const. In this case, the power-law time dependence of the inten- 
sity J0 may reflect, for example, motion of the radiation source toward 
the irradiated surface; in this case, however, the limiting angle Oz of 
the incident radiation also changes (usually, Or = 0). As before, the 
problem is self-similar if these angles O z (t) are always small; that is, 
if the radiation is almost completely unidirectional. The arbitrary na- 
ture of the function r 0), which shows the spectrum and angular 
distribution of the source radiation, and the arbitrary nature of the func- 
tion r (s), which shows the dependence of the absorption coefficient 
on the photon energy, permit us to analyze the effects of these func- 
tions on the heating and motion of the substance for the case of the 
self-similar solution. 

1. T h e  e q u a t i o n s  of m o t i o n ,  c o n t i n u i t y ,  e n e r g y ,  and  
t r a n s p o r t  of t h e  s o u r c e  r a d i a t i o n  a r e  

Ott Op Ov Ou 
0--/- + ~-m = O, "3-/-- = b~, �9 (1.1) 

Oe Ov Oq pv (1.2) 
O- - -F+p- -~+b~m = 0 ,  e =  _ ~ ,  

~2 02 

q =  l q, de, q ~ = 2 I  SsinOcosOdO, 

oJ 
cos0 ~ = - - •  (1.3) 

W h e n  y = c o n s t ,  and  w h e n  c o n d i t i o n  (0.2) h o l d s  t h e  e n -  

e r g y  and  r a d i a t i o n - t r a n s p o r t  e q u a t i o n s  c a n  b e  w r i t t e n  

v-~-  + yp W = 2 ('1--- 
r  

Oa r 
cos 0 ~-m = - -  kp~va~ (e) J .  (1.4) 

At  i n i t i a l  t i m e ,  t h e  g a s  w h i c h  o c c u p i e s  a h a l f - s p a c e ,  

i s  a s s u m e d  co ld  and  m o t i o n l e s s :  

u (m, 0) = p (m, 0) = 0, v (m, 0) = v0 �9 (1.5) 

T h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  p r o b l e m  a r e  g o v e r n e d  

b y  J0 and  ( in  g e n e r a l )  by  t h e  p r e s s u r e  p ( 0 , t )  of a p i s t o n  
o r  b y  i t s  v e l o c i t y  u ( 0 , t ) .  F o r  t h e  s e l f - s i m i l a r  p r o b l e m ,  
t h e  p i s t o n  m u s t ,  of c o u r s e ,  m o v e  a c c o r d i n g  to  a s p e -  

c i a l  p o w e r  law.  H o w e v e r ,  t h e  c a s e  of g r e a t e s t  i n t e r e s t  

i s  u s u a l l y  d i s i n t e g r a t i o n  in  v a c u u m :  p ( 0 , t )  = 0. 

We  i n t r o d u c e  t h e  s e l f - s i m i l a r  v a r i a b l e s  V,  P ,  U,  
Q,  a n d x :  

v (m, t ) =  t%qo%k-a/CV(x), 

p (m, t ) =  t~vq~'Vkr/~P (x), 

u(m,  t ) -  t%~q~oUk-r/cU (x), 

J (m, t, 8, O) = UqoQ (x, e, 0), 

x = mt-nq~ (a+b) / ek-2 / ~ , 

c = 3 a - -  b - -  2, n = [a(a + b )  - } -3a- -  b ] / c ,  
co), = - -3  + (z (2b + t ) ,  co)v = t + a (2a - -  1), 

c o ) ~ , = a ( a - -  b - -  t ) - -  1, cL~ : - - ( 2 b +  1), 
c L p =  2 a - -  t ,  c L = =  a - - b - - 1 .  (1.6) 

W i t h  (y = 0 ,  a = - 3 / 2 ,  a n d b  = - 1 / 2 ,  we  h a v e  c = - 6 ,  

n : 4 /3 ,  w v = 1/2,  Wp = - 1 / 6 ,  w u = 1/6,  ) 'v  = 0, kp  = 2/3,  
and  ku  = 1/3.  

S u b s t i t u t i n g  (1.6) in to  (1.1) and  (1 .4) ,  we  f ind  a s y s -  
t e m  of s e l f - s i m i l a r  e q u a t i o n s :  

rx (VP'  + yPV')  + 

+ [ 1 - - 3  v + a (2a - -  t - -  y (2b + t))  / c ] P V =  

Ot es 

= (y - -  1) (i f Q (x, e, O) sin OdOde), 
Ot el 

P' + rxU'  + [ ( a ( a - - b - - t ) - - l ) / c ]  U = O, 
rxV'  - -  [3 + a (2b + 1) / c] V = U '  

OQ a, O) cos+ <o~ - ~(~) (x ,~ ,+) ,  )/o p~ q 

cr = b - - 3 a - - a ( a  + b) . (1.7) 

We n o t e  t h a t  in  t h e  c a s e  of a f i n i t e  i n i t i a l  d e n s i t y  P0, 
t h e  p r o b l e m  i s  s e l f - s i m i l a r  on ly  w h e n  (~ = - 3 / ( 1  + 2b);  

h o w e v e r ,  in  t h e  l i m i t i n g  c a s e  of i n f i n i t e  d e n s i t y  (v 0 = 1 /  

/Po = 0),  t h e  v a l u e  of  o~ i s  a r b i t r a r y  ( the  l i m i t i n g  t r a n -  

s i t i o n  f o r  t h e  c a s e  of  m o n o c h r o m a t i c  r a d i a t i o n  w a s  

a n a l y z e d  in  [3]). 

F o r  a s e l f - s i m i l a r  p r o b l e m ,  t h e  p i s t o n  s h o u l d  m o v e  
a c c o r d i n g  to  

u (0, t) = uo t '~u (orp(O,t)=pot'~v). (1.8) 

B e c a u s e  of t h e  s u b s t i t u t i o n  of v a r i a b l e s  w h i c h  h a s  

b e e n  m a d e ,  t h e  i n i t i a l  and  b o u n d a r y  c o n d i t i o n s  b e c o m e  

b o u n d a r y  c o n d i t i o n s  f o r  Eqs .  (1.7) : 

U =  U0 (o r  P = P 0 ) ,  Q = * ( e ,  0) f o r  ( x = o ) ,  

u = p  = 0, V =  t f o r  z=oo. (1.9) 

2. T h e  r a d i a t i o n - t r a n s p o r t  e q u a t i o n  i s  a c t u a l l y  a 
s y s t e m  of  an  i n f i n i t e  n u m b e r  of  e q u a t i o n s ,  s i n c e  e and  

0 t a k e  on an  i n f i n i t e  s e t  of v a l u e s  on t h e  i n t e r v a l s  

(ca, e2) and  (01, 02). In p r a c t i c e ,  h o w e v e r ,  on ly  one  of 
t h e s e  e q u a t i o n s  n e e d  b e  s o l v e d ,  f o r  t h e  r a d i a t i o n  i n t e n -  
s i t y  of p h o t o n s  of e n e r g y  e 0 p r o g a g a t i n g  at  an  a n g l e  00; 
t h e n  t h e  o t h e r  i n t e n s i t i e s  c a n  b e  c a l c u l a t e d .  T h e  s o l u -  

t i o n  f o r  t h e  r a d i a t i o n - t r a n s p o r t  e q u a t i o n  c a n  b e  w r i t t e n  
in  t h e  f o r m  

m 

J = Jo exp (--x) = Jo exp ( - -  i • (t---~const). (2.1) 
0 

H e r e  T i s  t h e  o p t i c a l  t h i c k n e s s  of  t h e  l a y e r  f o r  p h o t o n s  

of  e n e r g y  e p r o p a g a t i n g  at  a n  a n g l e  0. I f  c o n d i t i o n  (0.2) 
i s  s a t i s f i e d ,  we h a v e  

T(rn, t, e, 0) --  q~(e)cos 0o T(rn ' t,eo,Oo) (2.2) 
q~ (e) cos 0 
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Accordingly ,  we have 

(m, t, e, O) = J (0, t, e, O) [J (m, J t, Co, O0)r] ~ , 
(0,  t, co, 0~;)1 " 

= q~ (B) cos Oo 
r (P~) cos 0 " (2.3) 

T r a n s f o r m i n g  to s e l f - s i m i l a r  v a r i a b l e s ,  we find 

q(z, ~, o ) =  q(o ,  ~, o) fo <~, ~o, Oo)l+ 
LQ (0, e0, ~00)J (2.4) 

This property considerably simplifies the solution of 
system (1.7). 

3. It is not difficult to see that, as in the case of 
monochromatic radiation (see [3]), the number of 
boundary conditions (1.9) for system (1.7) is one greater 
than the number of equations. It follows from the dis-  
cussion in [3] that the solution of this problem is also 
discontinuous. The proof in [3] that no more than one 
discontinuity may occur inthe desired solution remains 
valid here, provided that this solution does not pass 
through any internal singularity (in [3], it was argued 
that such solutions do not occur); also, the results 
found in an analysis of the behavior of the solution with 
variations in the initial density p 0 remain valid here. 

If the incident flux is bounded in energy, and P0 is 
finite, there exists a finite point xl at which 

U(xl) = P (x~) = Q (e0, 00, xl) --- 0. (3.1) 

According to {2.4), all  the other  va lues  of Q vanish.  
This  point is  s ingu la r  because  of an inde t e rmina t e  fo rm 
of the 0/0 type in the r a d i a t i o n - t r a n s p o r t  equation 
(~ ~ r162 as p - -  0 andJ  - -  0). F o r  la rge  op t i ca l t h i cknes se s ,  
the dominant  t e r m  in the energy  equation is  that of the 
in tens i ty  with the g rea t e s t  photon energy  e2 (for go(e) 
which d e c r e a s e s  with e) and the l eas t  angle 01 (beams 
at oblique inc idence  a re  absorbed  m o r e  intensely) .  This  
follows f rom (2.3) or  (2.4). In a suff icient ly smal l  
neighborhood of the point x 1 , the solut ion is ,  within 
t e r m s  of a higher  o rde r  of s m a l l n e s s  (for b <. 0), 

P [ - - b  V1 ~ (X 1 - -  X)  I -t/b, V = V 1 - -  P / r2xl 2, 
U = P / r x  1, 2(~, - -  I)Ae AOQ(e~, 01) = r x l V i P .  (3.2) 

On the i n t e r v a l s  e 2-< e-< a 2 +An and 01 -< 0-< 01 + AO, 
we may a s s u m e  

J (8, O) = J(s,, 01). 

The point x = 0 is  also s ingu la r ,  but of the "cusp" 
type. The solut ion in the neighborhood of this  point for  
P0 > 0 and for  a = - 3 / ( 1  + 2b) (the case of a f ini te  
in i t ia l  density) is  

V = Vo -}- A x  (a-1)l~ _}_ 

+[2Pot*bVot+~+ UoVo (2 (b --  1 ) /k  - -  

- -  r ) ]  x / [ 2 / ) o  ( a  - -  1 )  - -  r k ~  P o ] ,  

U =  Uo - -  rx (V - -  Vo), P =- Po + Uo x / k ,  

Q(%, 0o, x) = 

= Q (~0, 00, 0) [1 - vo~ po b x~ (~0) / cos %1. (3.3) 

Here A is  an a r b i t r a r y  constant;  k = 1 + 2b; and P0, 
V0, and Q (e, 0,0) a re  re la ted  by 

03 ~Z 

SS Q(e '  O' O)sinOdOde=2V~176 --~:) 
~t et 

(3.4) 

F o r  an inf ini te  in i t i a l  dens i ty  (v o = 0), as in  the case  
of monochromat ic  rad ia t ion ,  the co r rd ina te  of the shock 
wave is Xs -- "r The solut ion on the in te rva l  (xl, ~o ) is  
desc r ibed  by the constant  funct ions  

U =  V = 0 ,  P = P l .  (3.5) 

The point x 1 is  s ingu la r  because  of the "saddle-poin t"  
s ingu la r i ty  which follows f rom the i nde t e rmina t e  fo rm 
of the 0/0 type in the t r a n s p o r t  equation (~ - -  oo as v - -  0 
for  a < 0). The solut ion in i t s  neighborhood (x < x 1) i s  

V = [ a ,  P l  b ( x  - -  Xl)]  - t / a ,  P : Pl --  r2xl 2 V, 

U = rx 1 V, 

2 (~" -- t) Q (e~, 01) Aeh0 = - - ~ r x l P l V  , (3.6) 

The values  of x 1 and Pl a re  governed by the boundary  
condit ions at x = 0. 

The bounda ry -va lue  p rob lem is solved by an in te -  
g ra t ion  of the sys t em of equat ions  f rom x = xt to x --- 0 
and se lec t ion  of x 1 and Xd (the d i scont inu i ty  c o o r d i n a t e -  
the shock-wave front) or  Pl at v 0 = 0 in such a m a n n e r  
that  the two following condi t ions  hold at x = 0 : 

P(0)  = Po (or U(0) = Uo), 

J (0, e0, 0o) = * (%, 00). (3.7) 

When the second of condi t ions  (3.7) does not hold, 
the in tens i ty  of the incident  rad ia t ion  di f fers  f rom the 
given in tens i ty  not only in total  flux, but a l so  in angu la r  
and f requency d is t r ibut ion .  This  c i r c u m s t a n c e  d i s t i n -  
guishes  the c o n t i n u o u s - s p e c t r u m  p rob lem f rom that of 
monochromat ic  radia t ion.  A specia l  a lgor i thm has been 
developed for  the solut ion of this  problem.  It is based 
on the monotonic  cont rac t ion  of a r ec tang le  about the 
de s i r e d  point in the xt, Pt plane. Cer t a in  qual i ta t ive  
r e su l t s  about the na tu re  of the solut ion as a funct ion of 
x I and Pt,  found in [3] in an ana lys i s  of the monochro -  
mat ic  p rob lem,  were  used.  The accompanying  table  
shows some r e s u l t s  found f rom the solut ion of the p rob -  
l e m  of the heat ing and motion of an in i t ia l ly  inf in i te ly  
dense  medium (v 0 = 0) by a rad ia t ion  flux having a t r u n -  
cated P lanck ian  spec t rum,  

z)3exp(zz)-- I e 
Q ( O , z , o ) =  ~ -  e ~ p ( z ) - l '  z=T--~,  

0 ~< 0-.<. 1/2n, ~ (8) = e*, zt ~< z ~  z, ,  (3.8) 

with an account of the angular  d i s t r ibu t ion  of the in t en -  
s i ty for  an i so t rop ic  in i t ia l  d i s t r ibu t ion  for s eve ra l  
va lues  of zt, z2, a, b, and y.  The d i m e n s i o n l e s s  
average  energy  <z) shown in the table  is  equal to 

Z2 ZZ 

I (S (39, <Z>~ exp(z)--i cxp(z)--t 
zl 51 

F r o m  a compar i son  of the effects of rad ia t ion  pu l ses  
with the spec t rum (3.8) and pulses  of monochroma t i c  
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T A B L E  1. 

0.5 
0.5 
0.5 
0.5 
t.0 

0.5 
0.5 
0.5 
0.5 

a = - - V 2 ,  b : - - a / ~ ,  7 ~ / 3  

2.03 t.16 0.7~2 
2.5~ i.43 1.19 
2.94 i.52 i.78 
3.25 1.59 2.6~ 
3.34 1.79 t 2.56 

a ~ - - t ,  b ~ 0 ,  ~ 6/a 

2.03 ] 1.3t r 0.483 
2.54 t.54 0.643 
2.94 i.79 0.893 
3.25 2.07 t.25 

0.606 
0.78~ 
i.oo 
i.27 
1.26 

0.8i4 
0.877 
0.936 
0.991 

r a d i a t i o n  [3] of equal  to ta l  e n e r g i e s ,  and on the b a s i s  of 
s i m i l a r i t y  a r g u m e n t s ,  we find that  the  p r e s s u r e s  a r e  the 
s a m e  in the  two c a s e s  if the d i m e n s i o n l e s s  e n e r g y  of 
the  m o n o c h r o m a t i c - r a d i a t i o n  photons i s  equal  to the  
va lue  z a shown in the  tab le .  

p ~  

O.6 r /.5 

The accompany ing  f igu re  shows s e l f - s i m i l a r  p r o -  
f i l e s  of V, P ,  U, and Q (x, zz,0 } f o r  th is  p r o b l e m ,  fo r  
the c a s e  z 1 = 1, z 2 = 6, a = - 5 / 2 ,  b = - 3 / 2 ,  and T = 5 /3 .  
Accord ing  to Eq. (2.4), the d i m e n s i o n l e s s  i n t ens i t i e s  
Q (x, z, 0) have a p o w e r - l a w  dependence  on the in tens i ty  
Q(x, 6,0)  shown in the  f igu re  : 

Q (x, z, 0) = (l/6z)~(eG--i)[0 (x, 6, 0)] ~, 
e z -  1 

~ ( + ) ' c o s i  0 ' (3.20) 

( l < z < 6 ,  --1/2n<0<1/2~). 
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